Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications

Identifieur interne : 000D04 ( Main/Exploration ); précédent : 000D03; suivant : 000D05

Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications

Auteurs : Itamar Willner [Israël] ; Eugenii Katz

Source :

RBID : ISTEX:51F6275961F10F32D9B024DC3EADDAEAE8BA89C2

English descriptors

Abstract

Integration of redox enzymes with an electrode support and formation of an electrical contact between the biocatalysts and the electrode is the fundamental subject of bioelectronics and optobioelectronics. This review addresses the recent advances and the scientific progress in electrically contacted, layered enzyme electrodes, and discusses the future applications of the systems in various bioelectronic devices, for example, amperometric biosensors, sensoric arrays, logic gates, and optical memories. This review presents the methods for the immobilization of redox enzymes on electrodes and discusses the covalent linkage of proteins, the use of supramolecular affinity complexes, and the reconstitution of apo‐redox enzymes for the nanoengineering of electrodes with protein monolayers of electrodes with protein monolayers and multilayers. Electrical contact in the layered enzyme electrode is achieved by the application of diffusional electron mediators, such as ferrocene derivatives, ferricyanide, quinones, and bipyridinium salts. Covalent tethering of electron relay units to layered enzyme electrodes, the cross‐linking of affinity complexes formed between redox proteins and electrodes functionalized with relay‐cofactor units, or surface reconstitution of apo‐enzymes on relay‐cofactor‐functionalized electrodes yield bioelectrocatalytic electrodes. The application of the functionalized electrodes as biosensor devices is addressed and further application of electrically “wired” enzymes as catalytic interfaces in biofuel cells is discussed. The organization of sensor arrays, self‐calibrated biosensors, or gated bioelectronic devices requires the microstructuring of biomaterials on solid supports in the form of ordered micro‐patterns. For example, light‐sensitive layers composed of azides, benzophenone, or diazine derivatives associated with solid supports can be irradiated through masks to enable the patterned covalent linkage of biomaterials to surfaces. Alternatively, patterning of biomaterials can be accomplished by noncovalent interactions (such as in affinity complexes between avidin and a photolabeled biotin, or between an antibody and a photoisomerizable antigen layer) to provide a means of organizing protein microstructures on surfaces. The organization of patterned hydrophilic/hydrophobic domains on surfaces, by using photolithography, stamping, or micromachining methods, allows the selective patterning of surfaces by hydrophobic, noncovalent interactions. Photoactivated layered enzyme electrodes act as light‐switchable optobioelectronic systems for the amperometric transduction of recorded photonic information. These systems can act as optical memories, biomolecular amplifiers, or logic gates. The photoswitchable enzyme electrodes are generated by the tethering of photoisomerizable groups to the protein, the reconstitution of apo‐enzymes with semisynthetic photoisomerizable cofactor units, or the coupling of photoisomerizable electron relay units.

Url:
DOI: 10.1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO;2-E


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications</title>
<author>
<name sortKey="Willner, Itamar" sort="Willner, Itamar" uniqKey="Willner I" first="Itamar" last="Willner">Itamar Willner</name>
</author>
<author>
<name sortKey="Katz, Eugenii" sort="Katz, Eugenii" uniqKey="Katz E" first="Eugenii" last="Katz">Eugenii Katz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:51F6275961F10F32D9B024DC3EADDAEAE8BA89C2</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO;2-E</idno>
<idno type="url">https://api.istex.fr/document/51F6275961F10F32D9B024DC3EADDAEAE8BA89C2/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001505</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001505</idno>
<idno type="wicri:Area/Istex/Curation">000F88</idno>
<idno type="wicri:Area/Istex/Checkpoint">000612</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000612</idno>
<idno type="wicri:doubleKey">1433-7851:2000:Willner I:integration:of:layered</idno>
<idno type="wicri:Area/Main/Merge">000D29</idno>
<idno type="wicri:Area/Main/Curation">000D04</idno>
<idno type="wicri:Area/Main/Exploration">000D04</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications</title>
<author>
<name sortKey="Willner, Itamar" sort="Willner, Itamar" uniqKey="Willner I" first="Itamar" last="Willner">Itamar Willner</name>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Israël</country>
</affiliation>
</author>
<author>
<name sortKey="Katz, Eugenii" sort="Katz, Eugenii" uniqKey="Katz E" first="Eugenii" last="Katz">Eugenii Katz</name>
<affiliation>
<wicri:noCountry code="no comma">Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 91904 (Israel) Fax: (+972) 2‐6527715</wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Angewandte Chemie International Edition</title>
<title level="j" type="abbrev">Angew. Chem. Int. Ed.</title>
<idno type="ISSN">1433-7851</idno>
<idno type="eISSN">1521-3773</idno>
<imprint>
<publisher>WILEY‐VCH Verlag GmbH</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2000-04-03">2000-04-03</date>
<biblScope unit="volume">39</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="1180">1180</biblScope>
<biblScope unit="page" to="1218">1218</biblScope>
</imprint>
<idno type="ISSN">1433-7851</idno>
</series>
<idno type="istex">51F6275961F10F32D9B024DC3EADDAEAE8BA89C2</idno>
<idno type="DOI">10.1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO;2-E</idno>
<idno type="ArticleID">ANIE1180</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1433-7851</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>bioelectronics</term>
<term>biosensors</term>
<term>electron transfer</term>
<term>enzyme electrodes</term>
<term>monolayers</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Integration of redox enzymes with an electrode support and formation of an electrical contact between the biocatalysts and the electrode is the fundamental subject of bioelectronics and optobioelectronics. This review addresses the recent advances and the scientific progress in electrically contacted, layered enzyme electrodes, and discusses the future applications of the systems in various bioelectronic devices, for example, amperometric biosensors, sensoric arrays, logic gates, and optical memories. This review presents the methods for the immobilization of redox enzymes on electrodes and discusses the covalent linkage of proteins, the use of supramolecular affinity complexes, and the reconstitution of apo‐redox enzymes for the nanoengineering of electrodes with protein monolayers of electrodes with protein monolayers and multilayers. Electrical contact in the layered enzyme electrode is achieved by the application of diffusional electron mediators, such as ferrocene derivatives, ferricyanide, quinones, and bipyridinium salts. Covalent tethering of electron relay units to layered enzyme electrodes, the cross‐linking of affinity complexes formed between redox proteins and electrodes functionalized with relay‐cofactor units, or surface reconstitution of apo‐enzymes on relay‐cofactor‐functionalized electrodes yield bioelectrocatalytic electrodes. The application of the functionalized electrodes as biosensor devices is addressed and further application of electrically “wired” enzymes as catalytic interfaces in biofuel cells is discussed. The organization of sensor arrays, self‐calibrated biosensors, or gated bioelectronic devices requires the microstructuring of biomaterials on solid supports in the form of ordered micro‐patterns. For example, light‐sensitive layers composed of azides, benzophenone, or diazine derivatives associated with solid supports can be irradiated through masks to enable the patterned covalent linkage of biomaterials to surfaces. Alternatively, patterning of biomaterials can be accomplished by noncovalent interactions (such as in affinity complexes between avidin and a photolabeled biotin, or between an antibody and a photoisomerizable antigen layer) to provide a means of organizing protein microstructures on surfaces. The organization of patterned hydrophilic/hydrophobic domains on surfaces, by using photolithography, stamping, or micromachining methods, allows the selective patterning of surfaces by hydrophobic, noncovalent interactions. Photoactivated layered enzyme electrodes act as light‐switchable optobioelectronic systems for the amperometric transduction of recorded photonic information. These systems can act as optical memories, biomolecular amplifiers, or logic gates. The photoswitchable enzyme electrodes are generated by the tethering of photoisomerizable groups to the protein, the reconstitution of apo‐enzymes with semisynthetic photoisomerizable cofactor units, or the coupling of photoisomerizable electron relay units.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Katz, Eugenii" sort="Katz, Eugenii" uniqKey="Katz E" first="Eugenii" last="Katz">Eugenii Katz</name>
</noCountry>
<country name="Israël">
<noRegion>
<name sortKey="Willner, Itamar" sort="Willner, Itamar" uniqKey="Willner I" first="Itamar" last="Willner">Itamar Willner</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D04 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D04 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:51F6275961F10F32D9B024DC3EADDAEAE8BA89C2
   |texte=   Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024